FUNDAMENTALS OF PROTEIN-PROTEIN INTERACTIONS AND THEIR METHODS OF CHARACTERIZATION

Authors

  • Kholis A. Audah Department of Biomedical Engineering, Swiss German University, Tangerang, 15143, Indonesia

DOI:

https://doi.org/10.11594/bbrj.04.02.04

Keywords:

contacting residues, hot spots, interacting residues, protein-protein interfaces , residue interface propensities

Abstract

Protein-protein interactions are ubiquitous biological phenomena in all types of organism and play vital roles in various metabolic processes. Therefore, it is very important to understand how protein-protein interactions take place and govern different mechanisms at cellular and molecular levels. Thus, determination of protein-protein interactions is the key in elucidating such mechanisms. In order to provide adequate knowledge and guidance in selecting appropriate methods to determine protein-protein interactions, this article will review basic principles, definitions, terminologies, parameters and classification of protein-protein interactions, obtained either from in silico or laboratory experimental works. Some examples of commonly used biochemical and biophysical methods for characterization of protein-protein interactions were also discussed.

Downloads

Download data is not yet available.

References

1. Westermarck J, Ivaska J, Corthals GL 2013.Indentification of protein-interactions involved in cellular signaling. Molecular & Cellular Proteomics. 12(7):1752-1763. doi:10.1074/mcp.r113.027771

2. Vranken VD, Weiss GA 2012. Introduction to Bioor-ganic Chemistry and Chemical Biology. New York: Garland Science. doi:10.1201/9780203381090

3. Kastritus PL, Bonvin AMJJ. 2013. On the binding affinity of macromolecular interaction: daring to ask why proteins interact. Journal of The Royal Society Interface. 10(79):835. doi: 10.1098/rsif.2012.0835

4. Wetie N, Armand G, Izabela S, Alisa WG, Urmi R, Joseph AL, Costel DC. 2013. Investigation of stable and transient protein-protein interactions: past, pre-sent, and future. Proteomics. 13(3-4):538-557. doi:10.1002/pmic.201200328

5. Tolani P, Gupta S, Yadav K, Aggarwal S, Yadav AK. 2021. Big data, Integrative omics and network biolo-gy. Advance in Protein Chemistry and Structural Bi-ology. 127:127-160. doi:10.1016/bs.apcsb.2021.03.006

6. Massoud TF, Paulmurugan R. 2021. Chapter 47- Molecular imaging of Protein-protein interaction and protein folding. Molecular Imaging (Second Edition): Academic Press. 897-928. doi: 10.1016/B978-0-12-8163863.00071-5

7. Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C. 2010. Transient protein-protein interactions: struc-tural, functional, and network properties. Structure. 18(10):1233-1243. doi:10.1016/j.str.2010.08.007

8. Ursula J, Richard K, Vladimir UN. 2014. Conditional-ly and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chemi-cal Reviews. 114(13):6779-6805. doi:10.1021/cr400459c

9. Keskin O, Ma B, Nussinov R. 2005. Hot region in protein-protein interaction: the organization and contribution of sctructurally conserved hot spot res-idues. Journal of Molecular Biology. 345(5):1281-1294. doi:10.1016/j.jmb.2004.10.077

10. Keskin O, Tsai CJ, Wolfson H, Nussinov R. 2004. A new, structurally nonredundant, diverse data set of protein–protein interfaces and its implications. Pro-tein Science. 13(4):1043-1055. doi:10.1110/ps.03484604

11. Tsai CJ, Lin SL, Wolfson HJ, Nussinov R. 1996. A da-taset of protein-protein interface generated with a sequence-order independent comparison technique. Journal of Molecular Biology. 260(4):604-620. doi:10.1006/jmbi.1996.0424

12. Joël J. 1997. Specific versus non-specific contacts in protein crystals. Nature Structural & Molecular Biol-ogy. 4(12):973-974. doi:10.1038/nsb1297-

13. Janin J. 1995. Principles of protein-protein recogni-tion from structure to thermodynamics. Biochimie. 77(7-8):497-505). doi:10.1016/0300-9084(96)88166-1

14. Horton N, Lewis M. 1992. Calculation of the free energy of association for protein complexes. Protein Science. 1(1):169-181. doi:10.1002/pro.5560010117

15. Cyrus C, Joël J. 1975. Principles of protein–protein recognition. Nature Structural & Molecular Biology. 256(5520):705-708. doi:10.1038/256705a0

16. Privalov PL. 1979. Stability Small Globular Proteins. Advance Protein Chemistry. 33:167-241. doi:10.1016/S0065-3233(08)60460-X

17. Zerbe BS, Hall DR, Vadja S, Whitty A, Kozakov D. 2012. Relationship between hot spot residues and ligand binding hot spot in protein-protein interface. Journal of Chemical Information and Modeling. 52(8):2236-2244. doi:10.1021/ci300175u

18. Golden MS, Cote SM, Sayeg M, Zerbe BS, Villar EA, Beglov D, Sazinsky SL, Georgiadis RM, Vaida S, Koza-kov D, Whitty A. 2013. Comprehensive experimental and computational analysis of binding energy hot spot at the NF-kB essesntial modulator/IKKβ pro-tein-protein surface. Journal of the American Chemi-cal Society. 135(16):6242-6256. doi:10.1021./ja400914z

19. Cukuroglu E, Engin HB, Gursoy A, Keskin O. 2014. Hot spot in protein-protein interface: toward drug discovery. Progress in Biophysics and Molecular Bi-ology. 116(2-3):165-173. doi:10.1016/j.pbiomolbio.2014.06.003

20. David A, Sternberg MJE. 2015. The contribution of missense mutations in core and rim residues of pro-tein-protein interface to human disease. Journal of Molecular Biology. 427(17):2886-2898. doi:10.1016/j.jmb.2015.07.004

21. Bogan AA, Thom KS. 1998. Anatomy of hot spots in protein interfaces. Journal of Molecular Biology. 280(1):1-9. doi:10.1006/jmbi. 1998.1843

22. Tsai CJ, Lin SL, Wolfson HJ, Nussinov R. 1997. Stud-ies of protein-protein interfaces: A statistical analysis of the hydrophobic effect. Protein Science. 6(1):53-64. doi:10.1002/pro.5560060106

23. Scott DE, Bayly AR, Abell C, Skidmore J. 2016. Small molecular, big targets, drug discovery faces the pro-tein-protein interaction challenge. Nature Reviews Drug Discovery. 15:533-550. doi:10.1038/nrd.2016.29

24. Luo J, Guo Y, Zhong Y, Ma D, Li W, Li M. 2014. A functional feature analysis on diverse protein-protein interactions: application for the prediction of binding affinity. Journal of Computer-Aided Molecu-lar Design. 28(6):619-629. doi:10.1007/s10822-014-9746-y

25. Thiruphati R, Sravanthi S, Kumar A, Prabakharan EN. 2011. Protein-protein complexes. Journal of the Indian Institue of Science. 91:497-520.

26. Chakravarty D, Janin J, Robert CH, Chakrabarti P. 2015. Changes in the protein structure at the inter-face accompanying complex formation. IUCrJ. 2(6):1-10. doi:10.1107/S2052252515015250

27. Yan C, Wu F, Jernigan RL, Dobbs D, Honavar V. 2008. Characterization of Protein–Protein Interfac-es. Protein J. 27(1):59-70. doi:10.1007/s10930-007-9108-x

28. Cyrus C. 1974. Hydrophobic bonding and accessible surface area in proteins. Nature (London). 248(5446):338-339. doi:10.1038/248338a0

29. Ilya Dr, Vasker A, Alflalo C. 1994. Hydrophobic dock-ing: A proposed enhancement to molecular recogni-tion techniques. Genetics. 20(4):320-329. doi:10.1002/prot.340200405

30. Lawrence MC, Colman PM. 1993. Shape Complementarity at protein/protein interface. Journal of Molecular Biology. 234(4):946-950. doi:10.1006/jmbi.1993.1648

31. Jones S, Thornton JM. 1996. Principle of protein-protein interactions. Proceedings of the National Academy of Sciences. 93(1):13-20. doi:10.1073/pnas.93.1.13

32. Phizicky EM, Fields S. 1995. Protein-protein interac-tions: Methods for Detection and Anaysis. Microbio-logical Review. 59(1):94-123). doi:10.1128/mr.59.1.94-123.1995

33. Lee FS, Auld DS, Bert VL. 1989. Tryptophan fluores-cence as a probe of placental ribonuclease inhibitor binding to angiogenin. Biochemistry. 28(1):219-224. doi:10.1021/bi00427a030

34. Lee FS, Robert S, Bert VL. 1989. Tight-binding inhi-bition of angiogenin and ribonuclease A by placental ribonuclease inhibitor. Biochemistry. 28(1):225-230. doi:10.1021/bi00427a031

35. Robert S, Bert VL. 1991. Interaction of human pla-cental ribonuclease with placental ribonuclease in-hibitor. Biochemistry. 30(8):2246-2255. doi:10.1021/bi00222a030

36. Speer SL, Zheng W, Jiang X, Chu I, Guseman AJ, Liu M, Pielak GJ, Li C. 2021. The intracellular environ-ment affect protein-protein interactions. Proceed-ings of the National Academy of Sciences. 18(11):1-7. doi:10.1073/pnas.2019918118

37. Gao B, Ellis HR. 2005. Altered mechanism of the alkanesulfonate FMN reductase with the monooxy-genase enzyme. Biochemical and Biophysical Re-search Communications. 331(4):1137-1145.

38. Abdurachim KA. 2007. Studies to Elucidate the Mechanism of Reduced Flavin Transfer in the Al-kanesulfonate Monooxygenase System From Esche-richia coli. [Thesis]. Alabama [US]: Department of Chemistry and Biochemistry. Auburn University

39. Zhang YHP. 2011. Substrate channeling and enzyme complexes for biotechnological applications. Biotech-nology Advance. 29(6):715-725. doi:10.1016/j.biotechadv.2011.05.020

40. Raushel FM, Thonden JB, Holden HM. 2003. En-zymes with molecular tunnels. Accounts of Chemical Research. 36(7):539-548. doi:10.1021/ar020047k

41. Abdurachim K, Ellis HR. 2006. Detection of protein-protein interactions in the alkanesulfonate monoox-ygenase system from Escherichia colli. Journal of Bacteriology. 188(23):8153-8159. doi:10.1128/JB.00966-06

42. Jeffers CE, Nichols JC, Tu SC. 2003. Complex for-mation between vibrio harveyi luciferase and mon-omeric NADPH:FMN oxidoreductase. Biochemistry. 42(2):529-534. doi:10.1021/bi026877n

43. Wilson IA, Stanfield RL. 1994. Antibody-antigen interactions: new structures and new conformational changes. Current Opinion in Structural Biology. 4(6):857-867. doi:10.1016/0959-440x(94)90267-4

44. Weber J, Lee RS, Wilke-Mounts S, Grell E, Senior A. 1993. Combined application of site-directed muta-genesis, 2-azido-ATP labeling, and lin-benzo-ATP binding to study the noncatalytic sites of Escherichia coli F1-ATPase. Journal of Biologycal Chemistry. 268(9):6241-5247. doi:10.1016/S0021-9258(18)53245-2

45. Steitz TA, Anderson WF, Fletterick RJ, Anderson CM. 1977. High resolution crystal structure of yeast hexokinase complexes with substrates, activators, and inhibitors. Evindence for an allosteric control site. Journal of Biologycal Chemistry. 252(13):4494-4500. doi:10.1016/S0021-9258(17)40188-8

46. Evans PR, Farrants GW, Hudson PJ, Britton HG. 1981. Phosphofructokinase: structure and control [and discussion]. Philosophical Transactions of the Royal Society B: Biological Sciences. 293(1063):53-62. doi:10.1098/rstb.1981.0059

47. Sauer RT, Krovantin W, DeAnda J, Youderian P, Susskind MM. 1983. Primary structure of the immI immunity region of bacteriophage P22. Journal of Molecular Biology. 168(4):699-713. doi:10.1016/s0022-2836(83)80070-9

48. Vincent, Pierre J, Michel L. 1972. Trypsin-pancreatic trypsin inhibitor association. Dynamics of the inter-action and role of disulfide bridges. Biochemistry. 11(16):2967-2977. doi:10.1021/bi00766a007

49. Rao VS, Srinivas K, Sujini GN, Kumar GNS. 2014. Protein-protein interaction detection: methods and analysis. International Journal of Proteomics. 12:2-10. doi:10.1155/2014/147648

50. Poluri KM, Gulati K, Sarkar S. 2021. Experimental Methods for Determination of Protein–Protein Inter-actions. In: Protein-Protein Interactions. Springer, Singapore. 197-264. doi:10.1007/978-981-16-1594-8_5

51. Berggard T, Linse S, James P. 2007. Methods for the detection and analysis of protein–protein interac-tions. Proteomics. 7(16):2833-2842. doi:10.1002/pmic.200700131

52. Formosa, Tim. 1991. Using protein affinity chroma-tography to probe structure of protein machines. Methods in Enzymol. 208:24-45. doi:10.1016/0076-6879(91)08005-3

53. Friedrich P. 1984. Supramolecular Enzym Organization: Quatemary Structure and Beyond. Pergamon Press, Oxford

54. Srere, Paul A. 1987. Complexes of sequential metabolic enzymes. Annual Review of Biochemistry. 56(1):89-124. doi:10.1146/annurev.bi.56.070187.0005

55. Goodsell DS, Olson AJ. 1993. Soluble proteins: Size, shape and function. Trends in Biochemical Sciences. 18(3):65-68. doi:10.1016/0968-0004(93)90153-E

56. Klotz IM, Darnall DW, Langerman NR. 1975. In: The proteins (Neurath, H. & Hill, R. L., eds). Academic Press. Inc, New York

57. Berggard T, Linse S, James P. 2007. Methods for the detection and analysis of protein-protein interac-tions. Proteomics. 7:2833-2842. doi:10.1002/pmic.200700131

58. Muronetz VL, Sholukh M, Korpela T. 2001. Use of protein–protein interactions in affinity chromatog-raphy. Journal of Biochemical and Biophysical Meth-ods. 49(1-3):0-47. doi:10.1016/s0165-022x(01)00187-7

59. Ratner D. 1974. The interaction of bacterial and phage proteins with immobilized Escherichia coli RNA polymerase. Journal of Molecular Biology. 88(2):373-383. doi:10.1016/0022-2836(74)90488-4

60. Miller, Kathryn G. 1991. Use of actin filament and microtubule affinity chromatography to identify pro-teins that bind to the cytoskeleton. Methods in En-zymol.196:303-319. doi:10.1016/0076-6879(91)96028-p

61. Cohen BD, Lowy DR, Schiller JT. 1993. The con-served C-terminal domain of the bovine papilloma-virus E5 oncoprotein can associate with an alpha-adaptin-like molecule: a possible link between growth factor receptors and viral transformation. Molecular and Celullar Biology. 13:6462-6468. doi:10.1128/mcb.13.10.6462-6468.1993

62. Truan R, Xiao H, Ingles CJ, Blatt G. 1993. Direct in-teraction between the transcriptional activation do-main of human p53 and the TATA box-binding pro-tein. Journal of Biologycal Chemistry. 268:2284-2287. doi:10.1016/S0021-9258(18)53769-8

63. Fan C, Basri G, Simon W, Stephan FR, Alfredo iJ, Re-nato Z. 2016. Applying mass spectrometry to study non-covalent biomolecule complexes. Mass Spec-trometry Reviews. 35(1):48–70. doi:10.1002/mas.21462

64. Baird BA, Hammes GG. 1976. Chemical cross-linking studies of chloroplast coupling factor 1. Journal of Biologycal Chemistry. 251(22): 6953-6962. doi:10.1016/S0021-9258(17)32927-7

65. Leitner , Joachimiak LA, Unverdorben P, Walzthoeni T, Frydman J, Forster F, Aebersold R. 2014. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proceedings of the National Academy of Sciences. 111(26):9455–9460. doi:10.1073/pnas.1320298111

66. Mayers G. 2020. XLMOD: Cross-linking and chroma-tography derivatization reagents ontology. Biomole-cules. 1-10. doi:10.48550/arXiv.2003.00329

67. Rockford IL. 2006. Cross-linking reagents Technical Handbook. Pierce Biotechnology Inc.

68. Gunzburg Dj, Riehl R, Weinbarg RA. 1989. Identifi-cation of a protein associated with p21ras by chemi-cal crosslinking. Proceedings of the National Acade-my of Sciences. 86(11):4007-4011. doi:10.1073/pnas.86.11.4007

69. Baird BA, Hammes GG. 1976. Chemical cross-linking studies of chloroplast coupling factor 1. Journal of Biologycal Chemistry. 251(22): 6953-6962. doi:10.1016/S0021-9258(17)32927-7

70. Bragg PD, Hou C. 1980. A cross-linking study of the Ca2+ activated adenosine trihosphatase of Escherichia coli. European Journal of Biochemistry. 106(2):495-503. doi:10.1111/j.1432-1033.1980.tb04596.x

71. Sarkar FH, Gupta SL. 1984. Receptors for human gamma interferon: binding and crosslinking of 125I-labeled recombinant human gamma interferon to receptors on WISH cells. Proceedings of the National Academy of Sciences. 81(16):5160-5164. doi:10.1073/pnas.81.16.5160

72. Scherer PE. Manning-Krieg UC, Jeno P, Schatz G, Horst M. 1992. Identification of a 45-kDa protein at the protein import site of the yeast mitochondrial inner membrane. Proceedings of the National Acad-emy of Sciences. 89(24):11930-11934. doi:10.1073/pnas.89.24.11930

73. Sanders SL, Whitfield KM, Vogel JP, Rose MD, Schekman RW. 1992. Sec61p and BiP directly facili-tate polypeptide translocation into the ER. Cell. 69(2):353-365. doi:10.1016/0092-8674(92)90415-9

74. Matthias M, Hendrickson RC, Akhilesh P. 2001. Analysis of Protein and Proteomes by mass spectrometry. Annual Review of Biochemistry. 70(1):437-473. doi:10.1146/annurev.biochem.70.1.437

75. Traut RR, Casiano C, Zecherle N. 1989. Crosslinking of Protein Subunit and Ligands by Introductions of disulfide bonds. In: Creighton (ed)

76. Cover JA, Lambert JM, Norman CM, Traut RR. 1981. Identification of proteins at the subunit interface of the Escherichia coli ribosome by cross-linking with dimethyl 3,3'-dithiobis(propionimidate). Biochemis-try. 20(10):2843-2852.

77. Green NS, Reisier E, Houk KN. 2001. Quantitative evaluation of the lengths of homobifunctional pro-tein cross-linking reagents used as molecular rulers. Protein Science. 10(7):1293-1304. doi:10.1110/ps.51201

78. O’Brien R, Ladbury JE, Chowdry BZ. 2000. Isother-mal titration calorimetry of biomolecules. Chapter 10 in Protein-Ligand interactions: hydrodynamics and calorimetry Ed. Harding SE and Chowdry BZ. Oxford University Press.

79. Jelesarov L, Bosshard HR. 1996. Thermodynamic characterization of the coupled folding and associa-tion of heterodimeric coiled coils (Leucine zippers). Journal of Molecular Biology. 263(2):344-358. doi:10.1006/jmbi.1996.0579

80. Pearce KH, Ultsch MH, Kelley RF, De Vos AM, Wells JA. 1996. Structural and mutational analysis of affin-ity-inert contact residues at the growth hor-mone−receptor interface. Biochemistry. 35(32):10300-10307. doi:10.1021/bi960513b

81. Wintrode PL, Privalov PL. 1997. Energetics of target peptide recognition by calmodulin: A calorimetric study. Journal of Molecular Biology. 266(5):1050-1062. doi:10.1006/jmbi.1996.0785

82. Arroyo MIJ, Campos TJ, Hernández AA, McClements DJ. 2016. Characterization of flavonoid-protein in-teractions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins. Food Chemistry. 213:431–439. doi:10.1016/j.foodchem.2016.06.105

83. Reza AM, Ulrike H, Goody RS, Alferd W. 1997. Indi-vidual rate constants for the interaction of ras pro-teins with GTPase-activating proteins determined by fluorescence spectroscopy. Biochemistry. 36(15):4535-4541. doi:10.1021/bi962556y

84. Bai Y, Perez GM, Beechem JM, Weil PA. 1997. Struc-ture-function analysis of TAF130: identification and characterization of a high-affinity TATA-binding pro-tein interaction domain in the N terminus of yeast TAF(II)130. Molecular and Cellular Biology. 17(6):3081-3093. doi:10.1128/mcb.17.6.3081

85. Annie OB, Bruno A, Minh VT, Pierre C, Marc C. 1993. Interaction between the retinal cyclic GMP phosphodiesterase inhibitor and transducin. Kinet-ics and affinity studies. Biochemistry. 32(33):8636-8645. doi:10.1021/bi00084a035

86. Weiel J, Bershey JW. 1982. The binding of fluoresce-in-labeled protein synthesis initiation factor 2 to Escherichia coli 30 S ribosomal subunits determined by fluorescence polarization. Journal of Biological Chemistry. 257(3):1215-1220. doi:10.1016/s0021-9258(19)68177-9

87. Raffaele DF, Annalisa P, Giuseppe V, Riccardo C. 1991. Circular dichroism study on the conforma-tional stability of the dimerization domain of tran-scription factor LFB1. Biochemistry. 30(1):143-147. doi:10.1021/bi00215a021

88. Ling Y. 1997. Molecular characterization of the B-box protein-protein interaction motif of the ETS-domain transcription factor Elk-1. The EMBO Jour-nal. 16(9):2431-2440. doi:10.1093/emboj/16.9.2431

89. Gillette MA, Carr SA. 2012. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nature Methods. 10(1):28–34. doi:10.1038/NMETH.2309

90. Antony C, Guy P, Gilbert G. 2012. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. 36(2):380–407. doi:10.1111/j.1574-6976.2011.00298.x

91. Van B, Gary J, Kertesz V. 2007. Using the Electro-chemistry of the Electrospray Ion Source. Analytical Chemistry. 79(15): 5510-5520.

92. Keevil, Brian G. 2013. Novel liquid chromatography tandem mass spectrometry (LC-MS/MS) methods for measuring steroids. Best Practice & Research Clinical Endocrinology & Metabolism. 27(5): 663–674. doi:10.1016/j.beem.2013.05.015

93. Mullari M, Lyon D, Jensen LJ, Nielsen ML. 2017. Specifying RNA-binding regions in proteins by pep-tide Cross-Linking and Affinity Purification. Journal of Proteome Research. 7b00042. doi:10.1021/acs.jproteome.7b00042

94. Prestegard JH, Kishore AI. 2001. Partial alignment of biomolecules: an aid to NMR characterization. Current Opinion in Chemical Biology. 5(5):584-590. doi:10.1016/s1367-5931(00)00247-7

95. [95] Blackledge M. 2005. Recent progress in the study of biomolecular structure and dynamics in so-lution from residual dipolar couplings. Progress in Nuclear Magnetic Resonance Spectroscopy. 46:23-61. doi:10.1016/j.pnmrs.2004.11.002

96. Zhuogin Y, Pengfei L, Kenneth M. 2017. Using lig-and-induced protein chemical shift perturbations to determine protein–ligand structures. Biochemistry. 56(18):2349-2362. doi:10.1021/acs.biochem.7b00170

97. McCoy MA, Wyss DF. 2002. Spatial localization of ligand binding sites from electron current density surfaces calculated from NMR chemical shift pertur-bations. Journal of the American Chemical Society. 124(39):11758-11763. doi:10.1021/ja026166c

98. Welch BD, Blake BK, David DR, Meyer HH, Emr SD, Sundquist WI, Alam SL, Sun J, Payne M. 2004. Ubiquitin interactions of NZF zinc fingers. The EMBO Journal. 23(7):1411-1421. doi:10.1038/sj.emboj.7600114

99. Abarna T, Daniel N, Helen MR, Mitsuru O, Debbie L, Peter NR, Miriam H, Alain V, Natalia MV, Ernest DL. 2004. Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochroma-tin. The EMBO Journal. 23(3):489-499. doi:10.1038/sj.emboj.7600088

100. Wei F, Jia-Fu L, Jing-Song J, Tetsuya S, Mingjie Z. 2004. The tetrameric L27 domain complex as an organization platform for supramolecular assem-blies. Nature Structural & Molecular Biology. 11(5):475-480. doi:10.1038/nsmb751

101. Yoshimoto FK. 2020. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COVI9), the Cause of COVID-19. The Pro-tein Journal. 39:198-216. doi:10.1007/s10930-020-09901-4

Downloads

Published

2021-12-31

Issue

Section

Review Article

How to Cite

[1]
Kholis A. Audah, “FUNDAMENTALS OF PROTEIN-PROTEIN INTERACTIONS AND THEIR METHODS OF CHARACTERIZATION”, Bioinform. Biomed. Res. J. , vol. 4, no. 2, pp. 70–82, Dec. 2021, doi: 10.11594/bbrj.04.02.04.

Similar Articles

You may also start an advanced similarity search for this article.