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ABSTRACT 
 
Protein-protein interactions are ubiquitous biological phenomena in 
all types of organism and play vital roles in various metabolic pro-
cesses. Therefore, it is very important to understand how protein-
protein interactions take place and govern different mechanisms at 
cellular and molecular levels. Thus, determination of protein-protein 
interactions is the key in elucidating such mechanisms. In order 
to provide adequate knowledge and guidance in selecting appropri-
ate methods to determine protein-protein interactions, this article 
will review basic principles, definitions, terminologies, parameters 
and classification of protein-protein interactions, obtained either 
from in silico or laboratory experimental works. Some examples of 
commonly used biochemical and biophysical methods for characteri-
zation of protein-protein interactions were also discussed. 
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Introduction 

Protein-protein interactions are essentials 
in nearly all biological processes. They are es-
sential for all intra and extracellular functions, 
and the technology to analyze it is widely ap-
plied in various field of biological science [1]. 
Any major research topics in biology such as 
the central dogma of DNA replication, tran-
scription, and translation, vesicle transport, 
signal transduction, and drug or protein design 
are some examples in which protein-protein 
associations are essential components [2]. 
Moreover, the vast majority of proteins bind to 
other proteins at some time in their existence 
in order to perform various functions [3].  

Protein-protein interactions can be gener-
ated from different association of proteins, 
such as polymerization of identical subunit of a 
protein that will result as homodimer, 

homotetramers, homohexamers proteins and 
even the proteins that contain high numbers 
(for example, 60, 180, and 240) of subunits 
such as found in the viral coat proteins. Trimers 
are relatively rare compared to dimers and te-
tramers based on certain number of proteins 
that have been studied [4] (Figure 1.19 if nec-
essary). Protein complexes is a group of poly-
peptide chains linked by noncovalent protein-
protein interactions (PPIs) [5]. Protein com-
plexes can also be generated from multi subu-
nits, enzyme-inhibitor complexes, antibody-
protein complexes, or between two distinct 
types of proteins.  Protein-protein associations 
that are generated from different proteins re-
sult two different types of complexes that can 
be divided as homocomplexes and heterocom-
plexes which include transient protein-protein 
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interactions [4]. Homocomplexes are usually 
permanent and optimized.  Heterocomplexes 
can also have such properties, or they can be 
non-obligatory, being made and broken ac-
cording to the environment or external factors 
and involve proteins that must also exist inde-
pendently [6]. Transient protein-protein inter-
actions which means protein interactions that 
are formed and broken easily, control a large 
number of cellular processes [7]. All modifica-
tions of proteins necessarily involve such tran-
sient protein-protein interactions. These in-
clude the interactions of protein kinases, pro-
tein phosphatases, glycosyl transferases, acyl 
transferases, and proteases with their sub-
strate proteins [8]. 

 
Basic Principles of Protein-Protein Interac-
tions 

Numerous studies have addressed pro-
tein-protein interactions, yet the principles 
governing such interactions are not fully un-
derstood.  From structural point of view, there 
is no general pattern observed in the motif of 
binding sites.  One of the reasons is because 
similar proteins structures can associate in dif-
ferent ways, or the opposite situation could be 
the case in which proteins with globally differ-
ent structures can associate in similar ways [9]. 
 
Some Definitions 

Contacting residues are those responsible 
for the interactions across the interfaces. Two 
residues are defined to be contacting if the dis-
tance between any two atoms of the two resi-
dues from different chains is less than the sum 
of their corresponding van der Waals radii plus 
0.5 Å [10,11]. A residue is defined to be nearby 
if the distance between its Cα atom and a Cα 
atom of any contacting residue is less than 6 Å 
[9]. Protein-protein interactions may be medi-
ated by a small region of one protein fitting into 
a cleft in another protein or by two surfaces in-
teracting over a large area. Most interfaces are 
composed of two protein surfaces with good 
shape and electrostatic complementary 
[12,13]. Almost of all these interfaces bury 
more than 600 Å2 of total surface area and it is 
often assumed that the energy protein-protein 
binding is directly related to buried hydropho-
bic surface area [14,15,16].  

 
Hot Spots of Protein-Protein Interfaces  

Alanine-scanning mutagenesis has shown 
insignificant correlation between buried sur-
face area and free energy binding. Moreover, a 
highly uneven distribution of energetic contri-
butions of individual residues is found across 
each interface and with certain residues re-
sponsible for the bulk of the binding energy 
[17]. These critical residues are called hot spots 
and defined as a residue that when mutated to 
alanine, gives rise to a distinct increase in the 
absolute binding energy (∆∆G) of more than 2 
kcal/mol [18, 19]. These hot spots are enriched 
in tryptophan, tyrosine, and arginine [19, 20, 
21] with percentage of appearance more than 
10%; 21% of tryptophan, 13.3% of arginine, 
and 12.3% of tyrosine residues from a set of 
proteins that have been studied [21]. It has 
been well established that most hydrophobic 
residues are found in the interior of proteins, 
while polar and charged residues are found on 
the surfaces.  Interestingly, tryptophan and ty-
rosine residues are found in interiors and on 
surfaces with nearly identical frequencies, the 
only two hydrophobic residues for which this is 
true [19, 22].  A data set of as many as 2325 al-
anine mutants have been analyzed by using this 
hot spots experimental approach for which the 
change in free energy of binding upon mutation 
to alanine was measured [21]. These hot spots 
are surrounded by energetically less important 
residues that most likely serve to exclude bulk 
solvent from the hot spot by forming hydrogen 
bonds between residues.  Exclusion of solvent 
is found to be a necessary condition for highly 
energetic interactions [21,9]. To a lesser extent, 
conservation of phenylalanine and methionine 
also imply a binding site.  There is a positive 
correlation between energy hot spots and 
structurally conserved residues [23]. Further 
computational analysis on hot spots residues 
indicated that hot spots are not randomly 
spread along the protein-protein interfaces; ra-
ther, they tend to be clustered and are located 
within densely regions [9].  Within an assem-
bly, the tightly packed hot spots form networks 
of interactions.  These assembly regions are 
called hot regions. These regions contain resi-
dues that are moderately conserved that fur-
ther suggesting the crucial role of the 
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conserved interactions in the local densely 
packed environment. An interface may contain 
a single, or a few hot regions [9, 18].  
 
Parameters in measuring protein-protein inter-
faces   

Protein-protein interfaces are defined 
based on the change in their solvent accessible 
surface area (∆ASA) when going from a mono-
meric to a dimeric state [24, 25].  The interface 
residues (atoms) were defined as those having 
ASAs that decreased by >1 Å2 on complexation 
[26]. Many studies have carried out analysis of 
the characteristics of protein-protein inter-
faces in an attempt to search for factors that 
contribute to the affinity and specificity of pro-
tein-protein interactions. There are several 
fundamental properties that characterize a 
protein-protein interface, which can be calcu-
lated from the coordinates of the complex [27]. 
First, size and shape.  The size and shape of pro-
tein interfaces can be measured simply in abso-
lute dimensions (Å) or, more accurately, in 
terms of the ∆ASA on complexation.  The ∆ASA 
is often used, since there is a correlation be-
tween the hydrophobicity free energy of trans-
fer from polar to a hydrophobic environment 
and the solvent ASA [28]. Calculating ∆ASA may 
provide a measure of the binding strength.  The 
shape of the interfaces can also be analyzed and 
is relevant to designing molecular mimics. Two 
protein subunits may interact and form a pro-
tein-protein interface with two relatively flat 
surfaces or form a twisted interface.  A term 
“planarity”, which is a measure of how far the 
interface residues deviated from a plane, is 
commonly used to assess how flat or how 
twisted the protein-protein interfaces are.   A 
term “circularity” is often used to provide a 
rough guide to the shape of the interface. An in-
terface with circularity ratio 1.0 indicates ap-
proximately circular interface. Second, electro-
static and shape complementary between sur-
faces. Different methods have been used to 
evaluate the electrostatic [29] and shape com-
plementary of the interacting surfaces includ-
ing the evaluation of gap index in the protein-
protein interactions [30].  Based on gap index 
values from different types of protein com-
plexes, the interacting surfaces in the homodi-
mers, the enzyme-inhibitor complexes, and the 

permanent heterocomplexes are the most com-
plementary, whereas the antibody-antigen 
complexes and the nonobligatory other hetero-
complexes are the least complementary [31]. 
Third, residue interface propensities. The rela-
tive importance of different amino acids resi-
dues in the interfaces of complexes can give a 
general indication of the hydrophobicity, that 
can only be interpreted if the distribution of 
residues occurs in the interface are compared 
with the distribution of residues on the protein 
surface as a whole.  Residue interface propen-
sities for each amino acid is defined as the frac-
tion of ASA that individual amino acid contrib-
utes to the interface compared with the fraction 
of ASA that individual amino acid contribute to 
the whole surface (exterior residues plus inter-
face residues) [31]. A propensity of >1 denotes 
that a residue occurs more frequently in the in-
terface than on the protein surface.  The pro-
pensities for hydrophobic residues, with the 
exception of methionine, have shown a greater 
preference for the interfaces of homodimers 
than for those of heterocomplexes. The lower 
propensities for hydrophobic residues in the 
heterocomplex interfaces balancing by an in-
crease propensity for the polar residues.  
Fourth, hydrophobicity and hydrogen bonding. 
The mean hydrophobicity value [28] of resi-
dues involved in protein-protein complexes 
will vary depend on the subunit compose the 
protein complexes.  Studies have indicated that 
when the hydrophobicity values of the inter-
face are compared between the homodimers 
and the heterocomplexes, the interfaces of the 
heterocomplexes are less hydrophobic than 
those of homodimers that is positively corre-
lated with the residue propensities [31]. Major 
polar interactions between the components in 
the complexes can be predicted from the mean 
number of hydrogen bonds per 100 Å2 of ∆ASA.  
Studies have shown that the heterocomplexes 
that exist as both monomers and complexes 
have relatively more intermolecular hydrogen 
bonds per ∆ASA.  This is positively correlated 
with the residue propensities in which the tran-
sient complexes (those with components that 
occur as both monomers and complexes) con-
tained more hydrophilic residues in their inter-
faces than the permanent complexes [31]. Fifth, 
the binding constant. The strength of protein-



K A  Audah,  2021 / Fundamentals of Protein-Protein Interactions and Their Methods of Characterization 

  

   
BBRJ | Bioinformatics and Biomedical Research Journal  73  Volume 4 | Number 2 | December | 2021 

 

protein interactions can be measured through 
binding constant value that can be expressed in 
three different ways [31]. 1) Dissociation con-
stant (Kd), the most commonly used binding 
constant, according to the following equations 
(Eq.9-10): 

 

    

(Eq.9) 

              

(Eq.10) 
with P refers to bound protein, L refers to 

bound ligand, and PL refers to protein-ligand 
complex, while [Pf] and [Lf] refer to the concen-
tration of unbound P and L, respectively.  The 
smaller the Kd value, the stronger the binding 
is.  2) Affinity constant (Ka), with Ka = 1/ Kd.  3) 
A ratio of two rate constants, that is between 
the rate of formation of PL and the rate of 
breakdown of PL.  The rate of formation of PL 
is ka [Pf] [Lf], where ka is the association rate 
constant.  The rate of breakdown of PL is kd 
[PL], where kd is the dissociation rate constant.  
At equilibrium, the rate of formation of PL 
equals the rate of breakdown of PL, and Kd = 
kd/ka. 

The order of magnitude of Kd value of pro-
tein-protein interactions that have been stud-
ied that likely to be physiologically relevant, 
varies from the range of as week as 10-3 molar 
(M) to the strongest of 10-16 M range [32]. The 
Kd value of protein-protein interactions in the 
range of micromolar to nanomolar is consid-
ered a relatively tight interactions, and the pro-
tein-protein interactions are considered too 
tight when the Kd value less than 10-12 M [32]. 
Few examples of the very tight protein-protein 
interactions have been found between human 
placental RNase inhibitor (PRI) with both angi-
ogenin (Kd = 7  10-16 M) [33,34] and human 
placental RNase (Kd = 9  10-16 M) [35].                
 
Some Measurable Effects of Protein-Protein In-
teractions 

Protein-protein interactions are essential 
for proper cellular function. Protein-protein in-
teractions may lead to different physical or 
physiological changes of the interacting pro-
teins.  The effects of protein-protein 

interactions can be evaluated in different ways 
depend upon the nature of the proteins [31,36]. 
The most common effect of protein-protein in-
teractions is alterations of kinetic properties of 
proteins, such as substrates binding including 
the change of protein specificity to its sub-
strate, catalysis or altered allosteric properties 
of protein complexes, or even the alteration in 
mechanisms between single and coupled-en-
zyme reactions [37]. The alteration of kinetic 
properties of proteins is a strong indication of 
another effect of protein-protein interactions 
such as in the case of substrate channeling [38]. 
Substrate channeling is a common biological 
phenomenon that requires protein-protein in-
teractions. Substrate channeling is a process of 
direct transfer of the product of an enzyme to 
another enzyme or to nearby cells as its sub-
strate without equilibrium with the bulk phase 
[39]. This has been found in different enzyme 
systems from different organisms, such as tryp-
tophan synthase from Salmonella typhimurium 
[38] and carbamoyl phosphate synthetase, 
which is found in eukaryotes and prokaryotes 
[40]. More examples of channeling mechanisms 
have been reported not only found in multi-
functional or multisubunits enzymes, but also 
found in protein complexes between two dis-
tinct proteins [41,42]. Protein-protein associa-
tions can also cause conformational changes of 
proteins.  Although, it is still not clear to what 
extent proteins change their conformation on 
forming a complex [43,31], it is possible to dis-
tinguish various levels of conformational 
change: no change, side chain movements, seg-
ment movement involving the mainchain, and 
domain movements (gross relative movements 
of the domains) [31]. Conformational changes 
of proteins on forming a complex may then lead 
to the formation of a new binding site, although 
this will not always be the case.  The formation 
of a new binding site has been shown in α and 
β subunits of E. coli F1-ATPase [44], yeast hexo-
kinase [45], and Bacillus stearothermophilus 
phosphofructokinase [46]. Inactivation of a 
protein is another effect of protein-protein in-
teractions; such as in the case of the interaction 
of phage P22 repressor with its antirepressor 
[47], and with the interaction of trypsin with 
trypsin inhibitor [48]. 
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Methods for Determination of Protein-Pro-
tein Interactions 

There are numbers of methods that have 
been used to determine both in vivo and in 
vitro protein-protein interactions [49].  They 
can be largerly categorized as biophysical, li-
brary-based, genetic and in silico methods 
[50,51]. It is too vast to describe all the availa-
ble methods in this section.  Therefore, this re-
view will be focusing only on some biophysical 
methods that widely used for detection of pro-
tein-protein interactions, from classical chro-
matography techniques to recent spectroscopy 
technologies.  This literature study is not aimed 
to give an extensive review, rather serves as in-
itial guidelines to select suitable methods for 
conducting protein-protein interactions exper-
iments. In principle, there is no superiority nor 
preference in methods of choices in determin-
ing protein-protein interactions simply be-
cause it really depend upon the nature of the in-
teractions as well as the availability of the in-
struments. In fact, they are frequently comple-
mentary one another. 

The selection of methods for determina-
tion of protein-protein interactions will depend 
on at least the following three factors.  First, dif-
ferent levels of informations which want to be 
obtained, : 1) the informations between two 
proteins interaction including the binding 
strength [52]; 2) determination of amino acids 
residues involved in complex formation; and 3) 
measuring the consequences of the interac-
tions [53,54]. Second, the nature of the inter-
acting proteins including physical properties of 
proteins (e.g. concentration, solubility, amino 
acids sequences, and structural information), 
cofactors, reactions catalyzed including charac-
teristics of substrates, intermediate, and final 
products [55,56]. Third, the availability of in-
struments and cost of analysis.  These are more 
general factors rather than specific ones.  How-
ever, they are very important things for ones to 
take these into consideration before stepping 
forward in conducting protein-protein interac-
tions researches. These experiments usually 
require a variety of instruments, expensive 
chemical reagents, and high cost of analysis. 
Although these factors should not become ma-
jor problems in conducting researches, yet they 
are in certain conditions becoming the limiting 

factors. These three factors then will determine 
researchers to choose certain methods that fit 
best to their needs and conditions.         

 
Affinity Chromatography 

Protein-protein interactions are perhaps 
the most sophisticated of all the types of inter-
actions that can be exploited for affinity chro-
matography. The basic of this experiment is 
simple. One protein has to have a large different 
binding affinity to a column matrix such as Se-
pharose compared to other proteins including 
the ligand in protein extract.  Most proteins are 
washed off under low-salt conditions; the pro-
teins that are retained then able to be eluted by 
high-salt solutions and can be judge as the in-
teracting proteins.  This method was first used 
more than 30 years ago to detect phage and 
host proteins that interacted with different 
forms of E. coli RNA polymerase [49,57,58,59]. 
Several excellent reviews have been published 
on this widely used technique including a num-
ber of strategic and important considerations 
[52,60]. There are at least five advantages of 
protein affinity chromatography as a technique 
for detecting protein-protein interactions.  
First, protein affinity chromatography is very 
sensitive. It can detect interactions with a bind-
ing constant as weak as 10-5 M [52]. Second, 
this technique tests all proteins in an extract 
equally; thus, extract proteins that are detected 
have successfully competed for the test protein 
with the rest of the population of proteins.  
Third, interactions that depend on a multisub-
unit tethered protein can be detected, unlike 
the case with protein blotting [32]. Fourth, it is 
easy to examine both the domains of a protein 
and the critical residues within it that are re-
sponsible for a specific interaction, by prepar-
ing mutant derivatives [61,62]. Fifth, this tech-
nique allows the modifications of proteins of 
interest due to the rapid developments on ma-
trix column.     

 
Chemical Cross-Linking 

Chemical cross-linking is the process of 
chemically joining two or more molecules by a 
covalent bond. The molecules to be linked may 
be proteins, peptides, drugs, nucleic acids or 
even solid particles [63]. Chemical cross-
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linking reagents and the intramolecular and in-
termolecular cross- 

linking of proteins have been instrumental 
in the structural and functional characteriza-
tion of proteins [63]. Cross-linking reagents 
contain at least two reactive groups that can be 
targeted for cross-linking to different func-
tional groups such as primary amines and car-
boxyl groups on proteins or other molecules 
[64,65].  Cross-linking reagents have various 
spacer arms lengths that then can be used as 
molecular rulers for associations of biomole-
cules [66]. The selection of cross-linkers are 
based on the following characteristics: a) 
chemical specificity; b) spacer arm length; c) 
water solubility and cell membrane permeabil-
ity; d) reactive groups such as same (homo-
bifunctional) or different (heterobifunctional); 
e) spontaneously reactive or photoreactive 
groups; f) cleavability; and g) reagent contains 
moieties that can be radiolabeled or tagged 
with another label [67]. Chemical cross-linking 
method has been widely used to detect protein-
protein interactions both in vivo and in vitro. It 
can be used to deduce the architecture of pro-
tein complexes that are readily isolated from 
the cell and to detect proteins that interact with 
a given test ligand by probing extracts, whole 
cells, or partially purified protein 
[68,69,70,71,72,73]. Cross-linked proteins can 
be analyzed by gel electrophoresis or other 

methods such as immunoprecipitation [68,74] 
and mass spectroscopy.  Two-dimentional gels 
are used to deduce the architecture of proteins 
or assemblies that are readily isolated intact 
from the cell.  The procedures involve three 
steps (Figure 1.19) [75].  1) The protein com-
plex is reacted with a cleavable bifunctional re-
agent of the form RSSR’, and the R and R’ 
groups react with susceptible amino acid side 
chains in the protein complex to form P-RSSR’-
P’ adduct, where SS is a form of a disulfide bond 
within the reagent.  2) The proteins are frac-
tionated on an SDS-gel in the absence of reduc-
ing agents and the cross-linked proteins of the 
form P-RSSR’-P’ migrates as species of greater 
molecular weight.  3) A second dimension of 
the SDS-gel is run after treatment of the gel 
with a reducing agent such as β-mercaptoetha-
nol to cleave the S-S bond.  Un-cross-linked spe-
cies align along the diagonal, as their molecular 
weights do not change after reduction, while 
cross-linked proteins migrate off the diagonal 
as they migrate as molecules of the form P-RSH 
and P’-R’SH. The cross-links are then identified 
by their size, which corresponds to that of the 
un-cross-linked species P and P’.  This tech-
nique has been used to study the architecture 
of multienzyme complexes such as CF1-ATPase 
[69], E. coli F1-ATPase[ 70], and ribosome 
[75,76]. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Two-dimensional gels to identify cross-linked proteins in a complex 

 
 

2nd dimension (SDS) (β-Mercap-

toethanol and SDS) 

 

 

1st dimension (SDS) 
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There are three major advantages of using 
cross-linking methods to determine protein-
protein interactions.  First, cross-linking rea-
gent can capture weak interactions that might 
not be visible by other methods.  Second, it can 
capture transient contacts with different pro-
teins at various stages by freezing the process 
at different stages. Third, it can be done in vivo 
with membrane-permeable cross-linking rea-
gents.  One major disadvantage of using any 
cross-linking technique to detect protein-pro-
tein interactions is that it can detect unspecific 
nearest neighbors within the spacer arm of the 
reagents. Therefore, the most reliable infor-
mation is derived from zero-length reagents 
that induce a direct covalent link between 
cross-linked sites [77].  
 
Isothermal titration calorimetry  
Isothermal titration calorimetry (ITC) relies 
upon the accurate measurement of heat 
changes caused by the interaction of molecules 
(e.g. protein-protein interactions and DNA-pro-
tein interactions) in solution and possess the 
advantage of not requiring labelling or immobi-
lization of the components.  The raw data 

consist of peaks of heat output generated by 
successive injections of ligand and, when inte-
grated, these provide the total heat output per 
injection which provide the binding isotherm 
(Figure 1.20).  Injection number is proportional 
to both ligand concentration and the ratio of 
ligand to receptor.  As a result, curve fitting 
based upon a one or more site model provides 
the affinity as dissociation constant (Kd) and 
entalphy changes (∆H) directly.  The final cal-
culable information consists of association con-
stant (Ka), stoichiometry, Gibbs free energy 
(∆G), entropy (∆S) are obtained using the rela-
tionship ∆G = RT ln Kd = ∆H - T∆S, and Ka = 1/ 
Kd.  Heat capacity (∆Cp) can also be obtained if 
the experiments are performed over a range of 
temperatures [78].  ITC method has been used 
to characterize the coupled folding and associ-
ation of heterodimeric coiled coils (leucine zip-
per) [79], structural and mutation analysis of 
affinity-inert contact residues at the growth 
hormone-receptor interface [80]. and energet-
ics of target peptide recognition by calmodulin 
[81]. One major disadvantage of this method is 
that it requires higher concentrations of pro-
tein than most other methods.

  

 
Figure 2. An example of typical raw data obtained from an ITC experiment
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Fluorescence spectroscopy  
Fluorescence spectroscopy and its various 

applications for the science of life has devel-
oped quite rapidly. This is because many tech-
nical advances in instrumentation and data 
analysis methods have been carried out, such 
as in the method of determining protein-pro-
tein interactions [82]. Fluorescence spectros-
copy is the most important optical spectro-
scopic method for measuring protein-protein 
interactions. This because fluorophores such as 
tryptophan residues in proteins are highly sen-
sitive probes of environmental changes [83] 
and can be used to measure changes in mobility 
associated with binding [84]. Several fluores-
cence methods have been used to detect and to 
measure protein-protein interactions.  1) Fluo-
rescence spectrum.  Complex formation be-
tween two proteins can be detected from a shift 
in the wavelength of maximum fluorescence 
emission or the changes in the fluorescence in-
tensity caused by protein-protein associations.  
The changes in fluorescence intensity at a par-
ticular wavelength can be used to determine 
the dissociation constant of protein complexes. 
One example of this application that shows the 
changes in both parameters has been demon-
strated in the interactions of the γ subunit of 
cGMP phosphodiesterase (PDEγ) subunit with 
the transducin α subunit (Tα) in the presence 
of GTPγS or GDP [85]. There are two limitations 
of using this technique.  First, the fluorescence 
spectrum relies on the sum of the contribution 
of all the tryptophan residues.  Therefore, the 
probability of detecting a change in the fluores-
cence spectrum decrease with the total number 
of tryptophan residues in the interacting pro-
teins. Second, the sensitivity is limited by the 
intensity of fluorescence change that depends 
on the inherent sensitivity of fluorescence (in 
the order of nanomolar) and the change that is 
observed (which is not easily predictable).  To 
overcome this limitation, a fluorescent tag 
needs to be added to increase the sensitivity of 
the interacting proteins as long as the fluores-
cent adducts do not adversely affect the func-
tion of the modified protein or its interaction 
with other proteins. 2) Fluorescence polariza-
tion or anisotropy with tagged molecules.  The 
principle of this technique is based on rota-
tional motion of molecules which occur in the 

lifetimes of excited fluorescent molecules (na-
noseconds). This is accomplished experimen-
tally by the use of plane-polarized light of exci-
tation, followed by measurement of the emis-
sion at parallel and perpendicular planes.  Ro-
tational correlation times depend on the size of 
the molecule of approximately 1ns/2,400 Da 
for an idealized molecule.  Therefore, this 
method can be used to measure the affinity of 
two proteins for one another because of the in-
creased rotational correlation time of the com-
plex.  This method has been used to study sep-
arately the interaction of protein synthesis ini-
tiation factor 3 (IF3) and initiation factor 2 
(IF2) with 30S ribosomal subunits by using flu-
orescein-labeled IF3 and fluorescein-labeled 
IF2, respectively [76,86].  
 
Circular dichroism spectroscopy   

Circular dichroism (CD) spectroscopy 
measures differences in the absorption of the 
left-handed polarized light versus right-
handed polarized light when arise due to struc-
tural asymmetry.  CD is used to determine the 
secondary structure of proteins.  Therefore, 
this method can be used to detect protein-pro-
tein interactions only if the complex formation 
caused by secondary structural changes, in 
which the spectrum of the complex will differ 
from the sum of the individual components. 
This technique has been used to study the con-
formational stability of the dimerization do-
main of transcription factor LFB1 [87] and 
characterization of the B-box protein-protein 
interaction motif of the ETS-domain of tran-
scription factor Elk1 [88].        
 
Mass spectroscopy 

Mass spectroscopy (MS) method is one of 
the most developed analytical technique and it 
has become a central for protein research [89]. 
This is due to its development with various ion-
ization techniques such as matrix-assisted la-
ser desorption ionization-time of flight mass 
spectrometry (MALDI-TOF-MS) [90] and elec-
trospray mass spectrometry (ES-MS) [91].  The 
development in ionization techniques have 
change dramatically the use of MS from re-
stricted for small and thermostable compounds 
to macromolecules such as proteins.  Recent 
technologies have allow to combine MS with 
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other analytical instruments to develop more 
efficient tools to study a large-scale analysis in 
protein research. Some to mention are liquid 
chromatography-mass spectrometry (LC-MS) 
and liquid chromatography coupled to tandem 
mass spectrometry (LC-MS/MS) [92]. The use 
of MS technique in protein-protein interactions 
study is generally coupled with affinity selec-
tion procedures used in molecular or cellular 
biology; for examples: cross-linking or affinity 
chromatography [93]. Affinity selection proce-
dure followed by peptide digestion is per-
formed prior to analysis by MS. The MS method 
has been used to detect protein-protein inter-
actions in various biological systems [4]. 
 
Nuclear magnetic resonance spectroscopy 

The advances in nuclear magnetic reso-
nance (NMR) spectroscopy have alleviated the 
size limitations for the determination of bio-
molecular interactions in solution.  There are 
two parameters commonly used in determina-
tion of biomolecular interactions by NMR; re-
sidual dipolar couplings (RDCs) [94,95] and 
chemical shift perturbations (CSPs) [96]. RDCs 
are providing structural information of molec-
ular complexes. With recent technology, the 
structures of protein-protein and protein-nu-
cleic acid complexes up to 50 kDa can be accu-
rately determined.  CSPs, which is much easier 
to obtain, provide informations on interaction 
surfaces.  NMR is particularly powerful in map-
ping interfaces, allowing the study of weak and 
transient complexes that can be very difficult to 
study by other experimental techniques.  The 
characterization of protein interactions has 
greatly benefited from the incorporation of in-
terface mapping information in the computa-
tional modelling of complexes [97].  NMR stud-
ies of protein-protein interactions have varied 
from full structure determination to NMR-fil-
tered docking and modeling using interface in-
formation.  Several structures of protein-pro-
tein interactions have been determine com-
pletely de novo by NMR, for examples the struc-
ture of ubiquitin interactions of NZF zinc finger 
[98], HP1/PXVXL motif peptide interactions 
and HP1 localization to heterochromatin [99] 
and the tetrameric L27 domain complex [100]. 
The strength of NMR spectroscopy technique 
relies upon its sensitivity in detecting weak 

protein-protein interactions (with a Kd in the 
millimolar range) using a combination of inter-
molecular nuclear Overhauser effects (NOEs) 
and RDCs. However, it also has some disad-
vantages that it requires high concentrations of 
proteins and the limited size of macromolecus 
that can be detected up to 50 kDa only where 
the majority of protein complexes more likely 
have larger molecular weight than that.  It is 
also clear that the data generated from NMR 
spectroscopy required strong computational 
analysis knowledge that interdisciplinary ex-
pertise is necessary. 
 

Conclusions 
Determination of protein-protein interac-

tions plays vital roles in understanding differ-
ent mechanism in a wide range of biological 
systems in which the success will rely on the 
methods fit best with the nature of the interact-
ing proteins and other binding partners. The 
protein- protein interactions study becomes 
more important, more complex and more chal-
lenging with the emerging of various omics dis-
ciplines following the completion of human ge-
nome sequence. 
Particularly, during this pandemic situation, 
through the revealation of the proteins of Se-
vere Acute Respiratory Syndrome Corona-
virus-2 (SARS CoV-2), the cause   of   COVID-19   
[101], protein-protein interactions study is 
very crucial in understanding host-pathogens 
interactions and their applications toward pre-
cision medicine. 
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